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ULTRA-HIGH SPEED ELECTRO-OPTICAL SYSTEMS

EMPLOYING FIBER OPTICS

This report describes a comprehensive program aimed at the design and

development of high photographic speed, wide angle and high resolution optical

systems using fiber optics image correctors. The use of fiber optics field flat-

tener, distortion corrector and conical condenser is shown to give some valuable

extra degree of freedom to the lens designer. The preliminary third order de-

sign study phase of this program showed that a marked improvement is achievable

in the performance of five different types of systems, i.e., cemented and unce-

mented telescope doublets, landscape doublet, symmetric Hypergon and Pantoskop.

A considerable improvement in performance is also achievable in a two element

reflector system using a decentered stop at the center of curvature which is cap-

able of working in the ultraviolet, visible and infrared regions of the spectrum.

However, further work along these lines is required.

The fabrication and testing of a refracting and a reflecting system using

fiber optics field flattener and conical condenser was undertaken. The experi-

mental and analytical studies show that a Sutton lens (f/3.5) used in conjunction

with a fiber optics field flattener is capable of 150-200 lines/mm resolution over

a 60 ° field angle. When used with a conical condenser such a system is capable

of yielding an effective f-ratio less than f/1 and resolution of 70-100 lines/mm.

Further developments on a Fresnelized field flattener, high quality conical con-

denser and distortion corrector should yield optical systems with some unusual

performance characteristics. The experimental model of a reflecting system

with decentered stop was constructed and only preliminary testing could be

accomplished.

-i-
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During this program evaluation of various optical systems designs with

a known amount of aberrations was undertaken using image synthesizer techniques.

The importance of taking due account of diffraction effects in high quality systems

is demonstrated and the limitations of geometrical optics pointed out. Details of

this study are included in Appendix A. On the other hand, the two optical systems

constructed were evaluated on a frequency response measuring apparatus eapabte

of measuring up to 500 lines/mm.

Various investigations described in this report point toward the promising

new direction in the field of lens design using fiber optics image correctors.

However, further design studies and component development work is required

to fully exploit the various unusual possibilities.

November 30, 1962
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ULTRA-HIGH SPEED ELECTRO-OPTICAL SYSTEiVIS

EMPLOYING FIBER OPTICS

I. INTRODUCTION

This study and development program is aimed at the coupling of

conventional optical and fiber optics elements to meet the need, in future

space exploration projects, for relatively simple, rugged optical systems

capable of fast, high resolution performance over wide angular fields. Con-

ventionat systems only approximating the desired performance are _ener all y

made of many reflecting and/or refracting elements, and therefore present

imposing problems in alignment, mechanical stability and index of refraction

variations with temperature. It is believed that many such problems may be

eliminated+using tim field-flattening, light-condensing, and distortion correct-

ing properties of fiber optics components. The principal objectives of this

program were the design and development of fiber optics elements that would

have the above-mentioned properties, and the theoretical and experimental

determination of the magnitude of the improvements to be derived in visible,

ultraviolet and infrared imaging systems.

Prior to the commencement of this study, the field-flattening, light

condensing, and distortion-correcting capabilities of fiber optical components

(1)
had all been demonstrated experimentally. However, the size of the com-

ponents and, in the case of distortion eorrectors, their quality were inadequate

for wide angle photographic uses. Considerable developmental work was

needed to provide targe_.high resolution field flatteners and conical condensers

while a broader research effort was required for producing desired distortions

-1-
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to close tolerances. During the program improvements in fiber optics com-

ponent fabrication were made. Good quality field flatteners 3 inches in dia-

meter were produced by methods readily extendable to the production of

flatteners up to 5 inches in diameter. A conical condenser of good quality,

with entrance and exit diameters of 2 inches and 1/2 inch, respectively, was

fabricated. Methods for obtaining known amounts of distortion were studied,

and although no large high-quality distortion correctors were made, the

data gathered should facilitate future studies considerably. A discussion of

work performed on the fabrication of fiber optics components is found in

Section V of this report.

The design studies ranged from a generalized first order analysis of

coupled lens-fiber optics systems through a third order comparative study of

five simple 2-, 3- and 4- element lens systems, with and without fiber optics_

to a trigonometric analysis of a mirror system with decentered stop. The

first order analysis resulted in graphs showing the interrelations betweeen

resolution, aperture dimensions, and effective photographic speeds for

diffraction-limited systems employing fiber optics components. These are

discussed in Section II. The third order Studies of cemented and uncemented

telescope doublets, a landscape doublet, and the symmetric Hypergon and

Pantoskop objective, as reported in Section III, show the considerable en-

hancement in the resolution of these systems which is obtainable through the

use of fiber optics field flatteners and conical condensers. A factor of two or

more in resolution is often achievable. The detailed analysis of a decentered

reflecting system, reported at the end of Section IIi, indicates that a system

-2- /0
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that consists of a spherical mirror and a correcting cylindrical mirror may

provide resolution of about 40 lines/mm over a 16 x 60 degree field_ working

at f/8 without a conical condenser or at f/2 or tess with a conical condenser.

Early in the program an experimental camera, which incorporated a

wide angle (120 °) Sutton lens designed by Dr. J. Baker, and a fiber optics

field flattener were fabricated The Sutton lens, made of two concentric

spheres of glass, provides diffraction-Limited resoLution over its entire

spherical focal surface. The lens system and field flattener are rugged and

stable and, except for weight, appear to satisfy many criteria outlined for

this program. The performance of the camera has been evaluated by spatial

frequency response measurement and image synthesis methods. The details

of this camera and the tests made are found in Section W, which also includes

a report on the preliminary experimental study of the reflecting system

mentioned earlier.

The image synthesis studies carried out with a view toward the final

evaluation of the merits of the various diffraction-Limited lens designs

considered on the program, are discussed in the appendix.

-3-
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II+ GENERAL DESIGN CONSIDERATIONS

In this section the first order properties of conventional lens or mirror

optics and fiber optics combinations are initially considered with the view of

determining the ultimate limitations in resolution for systems of various

photographic speeds. The geometrical aberration theory is then used to

determine the improvements expected with the use of fiber optics. Finally,

a discussion of the merit function employed to assess the system and the

I
I

I
I

I
I

I

I

I

I

computational methods used to evaluate this function are given.

A. Interrelations Between Overall Resolution and Effective

Photographic Speed

A camera which covers a 20 to 40 degree field and works at photograFhic

speeds greater than f/1 is specified in the contract. It is important, at the

outset, to examine the criteria in terms of resolution that can be obtained

with fiber optics components.

In aerial reconnaissance or photographic work, the desired angular

resolution is specified. This quantity is governed by the wavelength and the

aperture dimensions and is independent of the focal length. Since the contract

calls for a "diffraction-limited" system, it is meaningful to discuss reso-

lution in terms of the dimensions of Airy disc images of stars. Assuming

for the moment that the wavelength is fixed, one may obtain in principle any

desired angular resolution by selecting a suitably large aperture, according

to the formula:

_ d
RAng 1.22

-4-
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In cameras without fiber optics components, one then selects the

focal length according to the desired photographic speed, which is proportional

to (d/f) 2 = (l/F) 2. The linear resolution is then given by:

1
RLin- 1.22FX

where F is the f/ number of the camera.

The linear separation between two points resolvable by static fiber

optics is not greater than 2d + 3t nor less than d+2t, where d is the diameter

of the fibers and t is the spacing between them. It is convenient to stipulate

that this displacement is roughly 3d. The resolution is then (1/3d) for the

fiber plate. In order to prevent color effects and leakage between the fibers,

it is necessary that d be greater than, or equal to, 7¢)_ for fibers of unit

numerical aperture. This provides for the propagation of approximately

20 modes of wavelength ),. It also stipulates that the static resolution

obtainable with fibers is in the neighborhood of:

R _ 1 _ 220 lines/mm at X = 0.5,,_
Fibers 3 _ _,

This condition may be somewhat relaxed and it is believed that

resolution up to 400 lines/mm is achievable with present fiber components

(2)
without dynamic scanning. Thus, the linear resolution obtainable with a

static fiber bundle is equivalent to that of a diffraction-limited f/3.5 camera.

Since both the linear resolution and the speed of a conventional camera are

governed by 1/F (Linearly and quadratically, respectively) it is clear that any gains

-5-
/3



!

I

I

!

I

!

I

I

I

I

I

I

I

I

I

I

I

i

I

in speed of a diffraction-limited system effected by using fibers in decreasing

the f//number below f/3.5 are accomplished at the cost of resolution. This

does not mean that a fast fiber optics camera cannot be made better than an

equivalent f/number ordinary camera. But if the camera is f/3.5 or less,

its resolution will not be diffraction-limited in the conventional sense.

The curves of Figure 1 indicate the resolution obtainable using

fiber conical condensers with conventional cameras of a given f/number.

Each curve corresponds to a conical condenser of given numerical aperture.

The maximum speed increase available for that numerical aperture is also

2
given. This is based on the assumption that the termVN 1 - N22 for the

conical element is equal to unity.

The formula used to generate these curves is:

72

n = (I.az F_) +'NA_

In this equation, R is the resolution of the compound system. The first

term under the radical is the square of the reciprocal of the resolution of

the diffraction limited objective. The second term is the square of the

reciprocal of the resolution obtainable from a conical condenser of numerical

_ r2 N 1 - N2 Here N 1 and N 2 representaperture NAef rl

the indices of refraction of core and coating, respectively, and r 2 and r 1

are the radii of the exit and entrance ends of the fibers in the cone. The

photographic speed of the compound system is equal to (r I /r2) 2 times the

speed of the lens.

-6- /¢
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It is clear from these curves that, without much loss in resolution,

one may considerably increase the speed of conventional lens systems of

f/number greater than 10-20 by using fiber components. The curves are

based on the assumption that fiber resolution is 1/3d, which is a conservative

assumption. Furthermore considerable gains in resolution can be achieved

(3)
using dynamic scanning.

Another interrelation between resolution and photographic speed in a

wide angle camera employing fiber optics is that which involves the overall

dimensions of the image format. In designing a conventional photographic

telescope, for example, one might begin by specifying the desired photographic

speed, i.e. the f/ratio, and then set the overall dimensions of the systems

according to the size of the linear resolution element of the film. Since the

film can be conveniently made to different _sizes, large field angle can be

covered and one need not consider the field angle requirements of the system

when the size is to be determined. For fiber optics systems, the state-of-the

art at the end of this development program is such that fiber plates larger

then 5 inches in diameter cannot be fabricated conveniently and economically.

Therefore, the use of mosaics of such plates would have to be made with

consequent grid structure on the recording film. The linear dimension of

the system are therefore fixed by the fiber optics element in conjunction with

the field angle requirements. The maximum focal length is thus:

= d inches/2 tan +fmax

where _ is the field angle and d the diameter of fiber optics plate available.

-8-
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This restriction in turn sets the aperture dimeus_on_ according to the

photographic speed requirements_ and thus the maximum a._gul_ar resolution.

B. Correction of Aberrations in Cameras Employing Fiber Optics,

Image Correctors.

In the foregoing section only perfect optical systems, ones yie!d_g

spherical wavefronts in image space, were consideredto draw some general

conclusions concerning the ultimate correction of optical systems that employ

fiber optics° The relative correctibility of optical systems with and without

fiber optics will now be examined on the basis of geometrical aberration

the ory.

The aberrations of a centered optical system may be expressed either

by specifying the deviations of the actual wavefront from a reference spherical

wavefront in the exit pupil or, equivalently, by enumerating the deviations,

in the image plane, of the intersection points of all rays from those of the

principle ray. Either of these aberration functions is expressible in terms

of an infinite series of terms in ascending powers of r, cos(a), and t_ where

r and a are the polar coordinates of the ray in the exit pupul, and t is

proportional to the off-axis distance of the object. The particular form which

these aberration polynomials takes depends on the choice of image plane or

reference spherical wavefront. But whatever the form, there is generally

a group of terms which describe distortion, a condition in which all the

rays from a point object meet at some point other than the Gaussian image

point. Another group of terms describes uniform discs of light which arise

because the rays from different points in object space do not come to focus

-9-
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at the same plane° Both of these aberrations_ distortion and field curvature

may be eliminated by using fiber optics components.

Thus the fibers in a bundle may be arranged to provide for the

compensation of distortions introduced by the lens. Similarly, a fiber plate

may have its entrance end ground and polished to the curvature of the best

focal surface of the lens, thereby eliminating the need for correcting the

lens for field curvature. Fiber optics components thus provide the optical

designer with two extra degrees of freedom which, in many cases, permit

significant improvements in the state of correction of given objectives and

may even allow for the accomplishment of the same photographic performance

with simpler objectives.

I
I

I
I

There are certain examples of systems in which fiber optics can

provide significant improvements. The well-known Schmidt camera and

(4)
photographic objectives of the Sutton type are systems in which the image of

an extended object is formed on a spherical or near-spherical surface.

Fiber optics field flatteners greatly increase the usefulness of these systems.

It is perhaps Less generally recognized that almost all conventional

I
I

I

I
l

I

cameras, even though they are designed to work over flat fields, would

provide a better average correction over their entire field if a curved rather

than a flat, image surface were employed. This is because, in the presence

of astigmatism, a curved surface placed between the sagittal and tangential

focal surfaces provides better average imaging than any flat surface.

In Section III of this report, the relative correctibility of five

-10-
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particular objectives with and without fiber optics wiLL be examined in

detail, on the basis of third order aberration theory. Some numerical

verification of the general conclusions derived here are reported. Before

presenting this data, however, it is necessary to describe in some detail

the methods and criteria used in making comparisons. The next two sections

are devoted to these descriptions

-11-



C Selection of Merit Function - Root Mean Square Deviation as a

Criterion for Comparison

Before any comparative study of the relative correctability of optical

systems can be initiated,itis necessary to define some standard measure

of the state of correction of such systems. As anyone familiar with the

area of optical image evaluation will know this choice of a standard involves

some arbitrariness, and no single number can completely specify the

performance of an optical system. For this comparative study, however,

it was decided that a statistical description of the point spread function (image

of a point source) would be both physically meaningful and numerically

convenient.

According to this statistical description, the value of the merit function

for an optical system is found by first computing, for each point in the object

field, the root mean square(rms) deviation, at a specified focal surface, of

the intersection points of all rays through the exit pupil from the intersection

point of the central ray, and then averaging (in the mean square sense) these

rms values over the entire object field. The central ray, in this context,

is the ray which intersects the focal surface at the center of gravity of the

point image. By averaging over the field one obtains a single number

specifying the state of correction of the system.

For a better understanding of this statistical description of the point

image, Table I has been compiled. An inspection of this table allows one

to compare the rms values for four symmetric flux distributions (Gaussian)

uniform disc, third order spherical aberration and airy disc) of approximately

-12-
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equal overall dimension. In addition_ the corresponding "30 and 50 per

cent points" are given_ these being the radii of circles centered on the

center of gravity of the distribution_ through which 30 and 50 per cent of

the energy collected by the optical system passes. All distributions are

normalized to give unit flux through the system.

In the case of the Gaussian distribution (_--(]/_¢-_)j ),

99 per cent of the total flux passes within a circle of radius 2.15 o- = C

where a- is the rms deviation of the ray interrection points. For the

uniform disc and spherical aberration distributions all energy passes within

a circle of radius C.

Table I

Third Order

Gaussian Uniform Disc Spher. Aberr. Airy Disc.

RMS 0.465 C 0.707 C 0.5 C 0.2 C

30% 0.256 C 0.55 C 0.16 C 0.06C

50% 0.39 C 0.35 C 0.35 C 0.(18C

99% C 0.995 C O.985 C C

In the case of the Airy distribution, C is the radius of a circle bounding

99 per cent of the total flux. If all the flux were considered (C = _ ) then

the rms radius would be infinite.

An examination of the table leads to the obvious conclusion that one

cannot directly infer the resolving power of an optical system from either the

rms values or the 30 or 50 per cent values. Rather a knowledge of the actual

distribution is needed for each point in the object field. Nevertheless, one can

-13-
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come within a factor of two of the actual average resolution from either of these

criteria and, for comparative purposes, either is useful.

D. Algebraic Formulation of Merit Function for Third Order Study

In this section the analytic statement of the form of the merit function

will be formulated. Expressions will be derived which give the val ue of this

function, to third order accuracy, for the general optical system having known

amounts of third order aberrations. The theoretical methods are essentially

(5)
those of Linfoot. The methods of calculation of aberration coefficients, on

(6)
the other hand, are those of Feder.

Let a ray of light of wavelength pass through the point (r, ¢) in the

exit pupul where o__r_l. The ray is assumed to originate from a point in object

space a distance H from the optical axis. If the distance to the edge of the field,

in object space, is given by h, and the quantity _- is used to denote the ratio

H/h, then in the Gaussian image plane, the ray is displaced from the Gaussian

image by a distance

where

+(O-C) a-_r co_ + Ea-3-_ AI(X)r cos_ +_(A)o-l( -_)and

= 5m 0 e Fo-r s,n Z ¢ ÷ C(7" _r 5,

+(0 C) _ -z- r _ln 4) + A I (A) r Slrl (l-b)

where h' specifies the distance from the optical axis of the Gaussian image of

the object point at h. The quantities ]3, F, C, (D-C) and E specify, respectively,

the amounts of spherical aberration, coma, astigmatism, Petzval curvature,

and distortion in the system. The quantities A 1 (}') and A 2 (X) give the

-14-
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l deviations of the rays caused by longitudinalchromatic aberration and chromatic

I difference of magnification. The values for all of these quantities may be found

i from the data obtained by tracing two paraxial rays, the marginal and the

pinciple paraxial rays, through the system. The algebraic paraxial ray trace

I procedure and the equations used to calculate the various coefficients in

i equations one are given by Feder (6). The coefficients A 1 and A 2 are exceptions.

The way in which these coefficients, which are necessary to the theoretical

I development of Linfoot, are incorporated into the computational scheme of Feder

i will be described at the end of this section. First, a brief description of Linfoot's

methods is in order.

I Equations 1-a and 1-b describe the third order aberrations of the general

i ray. In order to find the rms deviation for all rays at a particular field angle

and wavelength, it is necessary to integrate Eqs. 1-a and 1-b over the exit

I Ifpupil, bars ( -- ) are used to denote averages we have:

| = °
'I,>-] .. )-.j.-j

-o (2)

Having found the rms spot size for given field angle and wavelength the

field average spot size for that wavelength is obtained by intergranng _--_r over

the field, i.e.,

6. ix)= z Ar
0

(3)
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By weighting the various G( _ ) according to the spectral density

distribution of the light and integrating the product of G( X ) and the weighting

function over all wavelengths, one obtains the merit function G given by

c,. =(w(;_) 6-(A),J_ ¢4)
-I

O

Since Eq. 1 defines the ray aberrations on the G_ussian plane, the

value of G in Eq. 4 refers to that plane. In general, the Gaussian image plane

will not yield the smallest value of G. In this study, the performance of a given

lens type working on its "best" plane image surface will be compared with the

performance on its "best" curved surface. By "best" surface, in either case,

is meant the surface giving the smallest value of G.

The best fiat image surface may be found by adding to Eqs. 1-a and

1-b the terms br cos _ and br sin ¢_respectively. These terms describe the

effect of defocusing the objective by an amount bR/a from the Gaussian image

plane, where a/R is the numerical aperture of the lens in image space. By

proceeding as before through the steps described by Eqs. 2 through 4, one obtains

a function G(b). This function is then minimized with respect to b, thereby

yielding both the amount of defocusing which minimizes G and the value for this

"best" plane surface.

To find the value of G on the "best" curved surface, a procedure

described by Linfoot is followed. In this case, the term _ ( a- ) r cos ¢ is

added to Eq. 1-a and _ (a-) r sin ¢ is added to Eq. 1-b. These terms specify

an amount of defocusing wlich is a function, E , of the field position, o"

-16-
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One proceeds as before, obtaining from Eq. 4 an expression which is an integral

function of the choice of E An infinitesimalvariations _ (cr) then

changes G by an amount which vanishes when the choice of _ ( a" ) is such

as to minimize G. In the work of Linfoot previously referenced, a number of

examples that illustrate this procedure are given. Here it is only necessary to

I

I
I

state the pertinent results. In particular, the "best" curved surface is found

to be spherical. On this surface, the value of G is given by Eq. 5.

This expression is equivalent to that given by Linfoot's Eq. 1.42 on page 14

of the reference. The quantities d 1 ' and d 2 will be defined at the end of this-

section.

For the best fiat field it is found that:

'c --h"CD-C)b = - _-i_'_ - 6 - z

I

I

I

For this value of b, G is given by Eq. 6.

bG B_-t - 12- F z :2- z= -_ _zc + 1.5(D-c)

+ ,sa, . 1semi

6c (o-c) (o)

With Eqs. 5 and 6, which define the value of G on the "best" curved

and flat focal surfaces, it is possible to compare the correctibility of lens types

with and without fiber optics components in image space. A few more remarks

are necessary to clarify these equations.

First of all it may be noted that, while Eq. 1 contains a terms E or 3

specifying the distortion, Eqs. 5 and 6 are independent of E. In this sense these;

m -17-



equations do not follow from Eqs. 1 through 4. To obtain Eqs. 5 and 6, the

distortion term must be ignored. In this study, therefore, the distortion

aspects of the imaging process are neglected. Since these aspectsdo not

contribute to the blurring of the point image, no information is lost in their

presence.

Secondly, Eqs. 5 and 6 give G in terms of deviations from the center

of gravity of the image patch rather than from the principle ray. The center

of gravity is located by calculating from Equations 1-a and 1-b the average

I

I
i

I

values of _y(=h'F) and _ _ (=O). The aberrations of a ray are then taken

with respect to the center of gravity rather than the principle ray. The differ-

ence between the two, insofar as Eqs. 5 and 6 are concerned, is found in the

2
coefficient of F . For aberrations defined on the principle ray, as in Eqs.

i-a and i-2, the coefficient is 30; for aberrations defined on the center of

gravity it is 12, as in Eqs. 5 and 6.

I

I
I

i
i

Finally it is necessary to define the terms d 1 and d 2 in Eqs. 5 and

6, in terms of the computational scheme of Feder. In the integration over

the wavelength described by Eq. 1, one obtains terms in A 1 ' ' A2 '

and A'_ 2 which denote the weightedX- means of A 1 (X), and A2 (_.). To

obtain these in a particular case one would have to completely specify the

spectral distribution of the light under _onsideration. The quantities

2 2 2 _ 2
d I and d 2 are given by (A 1 - _'1 ) a:_:l (A 2 "A2 ). They thus

represent the mean square deviations of the coefficient A 1

from their mean values _" 1 and _2 "

( X ) and A2. ( _. )

For a particular wavelength _ ,

the coefficie;:t A 1 ( X ) is proportional to the distance along the optical

axis by which the focus for rays of this wavelength is separated from that of a

reference wavelength _ , for which A (A) = O.

-18-
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This distance is given by h' A 1

aperture. Similarly, h' A 2

focus of rays of wavelength

( A )_- where a/R is the numerical

( X ) o" denotes the lateral displacement of the

X from that of the reference wavelength.

Itis obviously impractical to consider a continuous spectral distribution

of radiation at the third order design stage. Generally only two colors, those

of the F and C lines, are considered, along with that of the D line, which is

used as reference. The third order chromatic aberrations are thus given by

2
Feder in terms of the longitudinaldisplacement (_. a/N' u' ) between the

foci of the F and C colors and the lateral displacement (_-b/N' u') between

the intersection points of the principle rays in the two colors at the paraxial

image plane. Here N' is the index of refraction and u' is the numerical

aperture in image space. The equations use to calculate _ a and _-b from

the paraxial ray trace data are given by Feder in the paper previously

referenced.

The usual three color scheme may be incorporated into Linfoot's

continuous color analysis by taking mean and mean square deviations for

the three colors F, C, and D, assuming each receives a weighting such that

the mean values ofA 1 {A)andA 2 (A) for the three colors are zero.

If the D line is used as reference, the square deviations of A 1 (D) and A 2 _)

are also zero. The deviations of the F and C foci from the D focus, due to

longitudinal and lateral color errors, are then ± 1/2 (_a/N'u') and

± 1/2 {_b/N'u'). The means square deviations for the three colors are

-19-
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thus d 2= 2/3 (_-a/2N'u') 2 and d 2= 2/3 (:_a/2N'u') 2

In the notation of Fe der, therefore, the values of the error function

on the "best" curved and flat image surfaces are given by E qs. 5-a and 6-a°

(5-a)

t6-a )

In the third order design studies of Section Ill of this report, the

object of the investigation of each lens type was to minimize expressions 5-a and 6-a

with respect to the design parameters. The functions G of Eqs. 5-a and 6-a

specify actual mean square distances on the appropriate image surface. The

square root of their inverses, therefore, are directly proportional to resolution.

III. RESULTS OF DESIGN STUDY

This section of the report is devoted to the presentation and discussion

of the results of the design studies. Five simple refracting objectives were

studied numerically in terms of the merit function described in Section II° D.

The objectives were: (1) cemented telescope doublet, (2) uncemented telescope

doublet, (3) landscape doublet- stop in front, (4) Hypergon, and (5) Pantoskop.

Each of these will be discussed here in a separate subsection. In addition,

a trigonometrical design study of a system consisting of a spherical

-20-



mirror with a decentered elliptical stop in the plane of its center of curvature,

and an incomplete study of this same system with a cylindrical mirror

corrector, will be reported. A few remarks common to the presentation of

the results of each of the third order analyses will first be made.

For each third order system, an initial design was taken from the

literature. The design was then studied as a function of the bending of the

first element. Specifically the curvature of first refracting surface was

altered_ that of the second (and third in the case of the cemented doublet)

being adjusted to keep the power of the first element constant. The aberratic, n

coefficients B, F, C, D, E, and the two color coefficients of Eq. 5-a and 6-a

were then recalculated. The value of each coefficient was then adjusted to

preserve its pertinence to a system of the required focal length and f/ratio.

(Such adjustments are necessary because the overall focal length of a multi-

lens objective is changed in the process of bending a single component). With

these values of the aberration coefficients, those of the merit functions, as

defined by Eqs. 5-a and 6-a of Section II-D were generated. These provided

a measure of the performance of an objective of the altered design working

over the 60 ° field angle originally specified. In the same way, the performance

of the altered design working over field angles of 32, 16, 8 and 4° was

evaluated. The first curvature was then bent again and the values of the

merit functions for each of the five field angles generated. Through a series

of such calculations, the values of the merit functions for each of the third

order systems working over each of five different total field angles were

obtained as a function of the bending of the first component. Sufficient

numerical da_a was thus generated to provide 50 plots (5 systems x 5 field

-21- _-_
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angles x 2 image surfaces) of merit function VSo curvature of the first

refracting surface. The minimum of each such plot provided the value of the

bending, giving optimum design for an objective of the type under consideration

working over the specified field and imaging on the desired surface (flat or

curved). Since the principal objective was to find the minimum value of

the merit function for each of the 50 cases rather than to study the way in which

the minimum is approached only ten plots of merit function vs. curvature

are shown in this report. These pertain to the cememted landscape doublet

and are shown in Figure 5_ of Section III.C.

For each of the five systems studied the optimum average resolution

(defined as the square root of the reciprocal of the minimum value of the

error function) is plotted as a function of total field. Two curves are thus

obtained for each system, one pertaining to a flat image surface without

fiber optics and the other to a curved image surface coincident with a fiber

optics field flattener. Equation 7, which follows the next paragraph, gives the

formula by which the resolution for the coupled objective - field flattener

system was computed. A figure giving the two plots pertinent to a particular

system is contained in the appropriate subsection.

The optimum designs for imaging on a flat surface (as defined above)

were then studied as a function of f/number. This was done by recalculating

the merit functions after weighting the aberration coefficients so as to _djust

their values for the desired aperture dimensions. From this data, curves that

give the average resolution (as defined above} as a function of f/number for

-22-
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each system, working over a specified field and imaging on a flat surface,

we re obtained.

The curve for a given system is shown in a figure to be found in the

appropriate subsection. In each such figure may also be found curves giving

the average resolution of various lens-fiber optics combinations working at

the same effective f/number. The latter curves are obtained by calculating

the effective resolution of the combination specified by two elements: (1) an

objective designed to work on a curved surface at a specified f/number; and

(2) a fiber optics conical condenser with its entrance end curved to fit this

surface and its exit diameter sufficiently dimfnished to provide the de'sired

increase in photographic speed. This effective resolution is obtained from the

formula
2. Z

)( )
_'1_ eft: = i_ lar_ s Rfjt, e,-

where the approximate resolution of the fibers is given by:

(7)

I

I

I

In this equation, _L is the wavelength, r I and r 2 are the entrance and exit

radii of the conical f_bers, and Nland N 2 are the indices of refraction

of core and coating materials.

Since the data for particular cases discussed in the following subsections

are derived from third order theory, the accuracy of the results in

describing the actual p._rformance of the objectives studied when working over

wide field angles or low f/numbers is certainly to be questioned, for in either

case it is true that a third order study provides only the beginning of a
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complete design study. It must also be mentioned that the quantity called

"resolution" in this report may differ from actual resolution, as measured

experimentally, by as much as a factor of two. This should not, however,

severely affect the validity of conclusions based on the comparison of the

resolution capab2ities of the objectives with and without fiber optics. Finally

it may be noled that, while the objectives considered were optimized with

respect to the bending of the first component, they were not opiimized with

respect to every parameter, nor were they optimized for each f/number for which

they were studied. Complete optimization in every case would have been

prohibitively time consuming, and unwarranted at the preliminary design phase,

which a third order study constitutes. In spite of these considerations, the

data obtained undoubtedly indicate the magnitude of the gains in speed and

performance that combinations of conventional objectives and fiber optics

components can provide.

A. Cemented Telescope Doublet

The initial design for this objective is given by Van Heel. (7) If a

focal length of 10 is assumed, the data are as follows:

C w0.2697557
1

tl_0.11111, nD_1.51806, V_33.42

C 2__0.2628717

t 2--0.6945, nD= 1.61358, V =21.20

C 3 = 0.0246527 where V =(nD-1)/(n F- nc)

The curves of Figure 2 indicate the best "resolution,, (as defined

above) as a function of semi-field angle, which can be obtained by bending

-24-
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the doublet. For these curves, the systems are assumed to be working at

f/11.5, with a focal length of 10 cm. For semi-fields less than 4 °, both

systems are diffraction-limited. The curves indicate that the fiber optics

field flatteners can provide 20 to 30 per cent increases in resolution in most

cases. The plots at the right of Figure 2 give the curvature of the first

surface as a function of semi-field angle for the design yielding the resolution

values plotted. Since the curves cannot be expected to be smooth, the points

are connected by dashed straight lines. The lines should not be read to

imply the curvature values for intermediate points. C 2 and C3 may be

found from C 1with the aid of the thick lens bending formula. (8)

C. = l- _

is the power of the lens and N in its index of refraction.where 1

f

In the left hag of Figure 3 plots are shown which indicate the

merits :of this type of lens with and without fibers optics conical

All systems are assumed to be working over a full field of 16°_

comparative

condensers.

and the designs are those appropriate for this field coverage, as given in

Figure 2. The lower curve of the same figure shows the resolution for

the flat-field design working at various f/ratios. The three upper curves give

the resolutions of three lens -fiber optics-conical con'denser systems

for the same f/ratios. The f/ratio of the lens alone in each of these

combinations is indicated alongside the appropriate plot. It may be seen that

in order to obtain the best performance at given effective f/ratio, one must

study a number of different combinations. For example at effective f/4 the

-2_-
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the combination in which _he, lens works at f/11o5 is be*_ter than those for

which the lens works at f/15 or f/20o It is clear from these curves that very

significant increases in performance can be achieved through the use of fiber

optics. The explanation may be found in the fact that there are not enough

design parameters available to allow for correction of astigmatism. Since

a large amount of astigmatism is present, the curved field imaging is much

better.

B.

Stephens.

Uncemented Telescope Doublet

The initial design for the uncemented telescope doublet is given by

{9)

This objective_ _hich is corrected for spherical aberration_ coma,

and primary chromatic aberrations, is described by the following data:

C 1 = 0o 16367

t1=0.0826, nD= 1.517; V= 64.5

C 2=-0.27933

t2= 0o0198_ nD= 1

C3=-0.27824

t3= 0.0703_ nD= 1.621_ V = 36.2

C =-0.069798
4

The lens was studied as a function of the bending of the first element as well

as the second. For all field angles and both focal surfaces the initial design

provided the best performance° Figure 4 shows that comparative merit of

thc design_ at various scmi-ficld angles, for imaging on a plane surface and
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on the spherical entrance face of a fiber optics field flattener. To obtain

these curves, a focal length of 10 cm and an f/ratio of 11o5 was assumedo

In the right half of Figure 3 may be found the plots that indicate the comparative

performance of this design, with and without fiber optics conical condensers

and working at various f/ratios. The f/ratio of the leas alone; in combinaticn

systems, is given along the appropriate plot.

C. Cemented Doublet Landscape Lens

The initial design for the cemented doublet landscape lens system

is taken from Conrady. (10)

C1= -0.450

t 1= 0.10, n D= 1. 5472, V = 45.8

C2 = 0. 1314

t2= 0.25, nD= 1.6118, V = 59o0

C 3 = -0. 5040

(Stop is located at a distance 0. 8176 in front of first surface).

In Figure 5 the mean squared deviation, averaged over the field,

of all rays from the central ray (as explained in the introduction to this

section) is plotted as a function of the curvature of the first surface for

fields of semi-angle 30, 16, 8, 4 and 2 ° . From the minima of these curves

the plots of Figure 6, which show the optimized resolution as a function of

field angle, were obtained. In these curves a focal length of 10 cm and

f/11.5 are assumed° The curves plotted at the upper right of the figure show

the curvatures of the first surface yielding the resolutions plotted. From the

-30-
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curves of Figure 7, the performances of the system with and without fiber

optics conical condensers are compared.

Do Hypergon

{11)
The initialdesign for the Hypergon lens is given by Conrady.

The data are as follows:

CI= 1.167

t1=0.2200 , nD= 1.5101, V= 63.4

D 2 = 1. 158

t 2= 1. 3800, nD= 1.000

C3= -C 2

C 4 -C 1

t3= 0.2200, nD= 1.5101, V = 63.4

(The stop is located at a distance 0. 690 from the second surface.)

The resolution of the system working at f/10 and 10 cm focal

length was studied as a function of bending of the first element. The second

element was adjusted at all time to preserve the symmetry. In Figure 8,

the best resolutions obtainable for various semi-field angles are shown. The

advantage offered by fiber optics field flatteners is very marked in this case.

Even more pronounced are the increases in performance which result from

the use of conical condensers. These are shown by the curves of Figure 9

for systems working over 60 ° fields.
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E . Pantoskop

The initial design for the Pantoskop system is given by Conrady.

The data are as follows:

C 1 = 1. 343

t 1 = 0.1740, nD= 1. 5317, V = 48.9

C 2 = 0. 0625

t2= 0.0190,

C3 = 1.310

C4 = -C 3

C =-C
5 2

nD= 1.6034, V = 38.0

t3 = 1. 240, riD= 1

t4=t , nD=1.6034 , V=38.0

t5=t I , nD= 1.5317 , V = 48.9

(i2)

C -'--C
6 1

(the stop is located at a distance 0. 620 behind the third surface}.

The design was studied at f/10 as a function of bending of the

first glass, the secoad being adjusted to preserve symmetry. For a focal

length of 10 cm, the best obtainable resolution for various field angles is given

by the curves of a F'igure 1_. As with the Hypergon lens, fiber optics field

flatteners provide substantial improvements. The curves of Figure 11 give

the average performances of various lens-fiber optics - conical condenser

systems working over 60° fullfields. The; lowest curve gives the resolution

as a function of f/ratio for the best flatfielddesign.
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F. Wide AngLe Reflecting System

The desirability of reflecting optics in space exploration is obvious.

The advantages of Lightweight and broad spectral range are significant+

Centered reflecting system_ however, cannot provide wide angle coverage

except at very low f/ratios_ because of the obstruction of Light by the film

plane and/or secondary mirrors. At these Low f/ratios reasonable correction

can be obtained only by using complicated correcting elements_ generally

refracting. As a resuLt one would except that a wide angle reflecting system

of simple design would not be possible. That such a design may neverthe-

less exist was suggested by Dr. James Baker_ who proposed the general

form of the system.

The system proposed by Dr. Baker is essentially a variation of

the Schmidt camera in that it consists of a spherical mirror with a stop

Located in the plane of its center of curvature and forms an image of an

extended object on a spherical focal surface. It differs from the Schmidt

camera in that the stop is decentered to provide wide angle coverage and is

made elliptical to reduce the effect of the spherical aberration of the mirror.

The system is presented schematically in Figure 12+ The Lower edge of the

stop is located a distance d from the optical axis. This distance specifies

the angular field which may be covered without any vignetting of the off-axis

pencils. This angular field is given by 2tan-1(d/R)_ where R is the radius

of the mirror. Thus the field of view may be extended by increasing d.

The aberrations of the fan of rays that enter the system parallel to

optical axis are determined by d and by B, the aperture dimension in this
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plane. The aberrations of the upper ray of the fan are given by a series of

terms in powers of (d+B)_ white those of the lower ray are given in powers

of d. In terms of the customary aberration polynomial that describes the

performance of centered systems, these aberrations are given by the

spherical aberration terms° Clearly, any increase in field coverage (and,

therefore, d) is obtained at the cost of increased aberrations. These

aberrations may be reduced somewhat by decreasing B by using an ellip-

tical aperture which provides the same total flux to the system.

Up to this point the aberrations of the system have been considered

only in terms of rays that eater the camera in a direction parallel to the

optical axis. The off-axis aberrations may be seen to be slightly less.

Consider, for example, a parallel pencil of rays that enter the system in

such a way as to have no component in the direction perpendicular to the

plane of Figure 12 The aberrations of the fan which lie in the plane of the

figure depend only on the distances d' and B'. These distances are the

projections of the lengths d and B onto a plane perpendicular to the path of

the rays. Since d'<d and B',_ B, the aberrations of the fan are less than tho.,m

of the on-axis pencil. It may also be seen that it is sufficient to study only

those pencils that have no component of direction perpendicular to the plane

of Figure 12. This is because, except for a foreshortening of the cross

sectional dimension of a pencil inclined at any azimuth to this plane, the

choice of the plane is arbitrary since the system is symmetric about a line

through the center of curvature perpendicular to the optical axis. The system
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is thus capable of covering a wide field of view in the direction perpendicular

to the plane of Figure 12. For the determination of the choice of eccentricity

of the aperture and focal surface that woutd provide the best compromise

between resolution and field coverage, a numerical design study of the system

was made.

A computer ray trace program for the IBM 7090 was written to

determine which combination of aperture eccentricity and focal surface wouk[

provide the best imaging over 16 x 16, 12 x 16 and 8 x 16 degree fields at

f/ratios of 8, 12, 16, and 20. The program was designed so that it can be

used to trace an arbitrary number of rays from points at the centers of mass

of equal area portions of an elliptical aperture of arbitrary eccentricity.

The rays are traced to one or more spherical focal surfaces concentric with

the mirrror. Several types of results may be obtained, including sagittal

and tangential fans and complete spot diagrams. The rms deviations of all

ray intersections from the center of gravity of the image patch on the chosen

focal surface for any desired field angle may be obtained_ as well as the rms

deviations in two perpendicular directions at the focal surface. For the

study, best images were taken to be those that gave symmetric image patches.

Thus if bY and/_z specify the deviations of a ray from the center of the image

patch_ in two perpendicular directions, the best images are those for which

--'-'2- ----g-- --2---
A y =_ z ::_r /2_ where the superscribed lines indicate averages.

One expected result of the study was that the rms deviations for

on-axis and off-axis pencils differed slightly from one another_ the latter
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being less than 5 per cent better for the field angles considered. It was

therefore possible to make a complete study of the system by evaluating

in detail only the on-axis pencil. The best design is thus found by determining

the combination of focal surface and the aperture eccentricity which gives

a symmetric image patch with a minimum value of rms deviation. The

results of this study are shown in Figure 13. The curves give the values

of the rms deviation of rays that form a symmetric image patch as a function

of the ratio of major to minor axis of the elliptical aperture. The lower

edge of the aperture is assumed to lie at a distance d= 2 inches from the

optical axis. The radius of curvature of the mirror is 14 inches. The

four curves are Labeled according to the effective f/number of the system

under study. The ordinate is scaled in thousandths of inches. If the

reciprocal of the rms is taken as the measure of resolution, an:rms of two

thousandths provides a resolution of about 20 lines/mm. The radius of

curvature of the focal surface that gives the minimum rms is indicated above

the appropriate curves. It is clear from these curves that not much is gained

by reducing the speed below f/12. Since the value of d is fixed at 2 inches

for all the curves_ they describe only the performance of a system designed

to work over an unobstructed 16 ° field.

To determine the improvements that might be obtained by

reducing the field angle requirements, the system was further studied for

values of d between 1 and 2 inches at f/8 and f/12. The results are shown

in Figure 14. For these curves the eccentricity of the aperture was fixed;
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a ratio of major to minor axis of 5 was assumed. The curves give, for this

eccentricity, the rms deviation of rays that form a symmetric image patch

as a function of the unobscurred field that the system can cover. The lower

curve indicates that a field of 12 ° (by 60 or more degrees in the other

direction) can be covered by this system at f/12 with approximately uniform

resolution of 4/mm. Such a system would be diffraction-limited for red and

infrared radiation. The diffraction limitation is imposed by the narrow

dimension of the elliptical aperture. It is clear that a final design of even

this simple system cannot be made without precise specification of the

desired spectral range, since diffraction limitations arise with longer wave-

lengths for those choices of eccentricity that the geometrical theory predicts

as optimum. For a system designed to work in the visible, the design with

d = 1.5 and f/12 appears to provide the best compromise.
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G. Improvement of Performance of Wide Angle Reflecting System Using
a Cylindrical Reflector

The data plotted Figure 13 and 14 of the previous section indicate that

a high state of correction at low f/ratios is not attainable with this simple

system. To obtain better correction, a number of obvious correcting elements

suggest themselves. First among these is the Schmidt corrector plate

designed to eliminate the spherical aberration in a system working at the

f/number governed by the off-axis distance of the outer edge of the elliptical

aperture. Such a plate would completely eliminate the mcaochromatic

aberrations on axis,and would provide good imaging for all pencils of moderate

obliquity. However, for those pencils having large components in the direction

perpendicular to the plane of Figure 12, the aberrations would be serious.

The chromatic errors introduced by the corrector plate would also limit its

usefulness.

A second possible means of correcting the aberrations of the system is

the incorporation of a concentric refracting element such as is used in Brower's

concentric systems. This element would also be limited by color effects,

but has the advantage of preserving the symmetries of the original system.

It would, therefore, not introduce serious errors for pencils of large

obliquity, as would a Schmidt plate. In addition the element provides the

obvious constructional advantage of spherical surfaces.

The possibility of incorporating refracting elements of zero first order

power, with spherical surfaces, in the immediate region of the aperture was
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also suggested. The difficulty in these cases lies erimarly in the fact that

such correctors completely destroy all the symmetries of the system° This

is because the only spherical _urfaces symmetric about the optical axis of

the original system which provide zero power are plane surfaces, perpendicalar

to the optical axis. It would seem that spherical surfaces with their centers

of curvature removed from the optical axis would be required ; however3 it is

difficult to visualize what might be expected from such refracting elements.

Unfortunately, the time and funds alloted for this program did not

allow a comparative study of these poosibilities. While each element was

being studied in a rough quantitative manner in terms of the aberrations of

the original system, a novel type of corrector element suggested itself. This

element was one which was peculiar to a decentered system of this type and

might provide significant improvement.

A cross-section of the system with this corrector is shown in the right

side of Figure 12. The cross-section is taken through the minor axis of

the elliptical aperture.

Consider the aberrations of the original system for the pencil

parallel to the optical axis. Rays in the fan through the minor axis of the

elliptical aperture cross the optical axis at points which depend on the height

at which they strike the main mirror_,the higher rays crossing closer to the

mirror. At a short distance off axis and at a point considerably closer to

the mirror than the intersection points of any of these rays with the optical

axis, all the rays of the fan come within a very small distance of one another.

Since the tangential fan is quite narrow {the minor axis being short) the depth
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of focus of this fan is comparatively great. If we now examine the sagittal

fan of rays, it is clear that its depth of focus wiLl be comparatively smaLl,

since the major axis is about five times as long as the minor axis. Since the

fan is effected onLy by the spherical aberration of the mirror, aLL rays will

cross the axis at almost the same point. This point lies within a negligible

distance from the point where the upper ray of the tangential fan crosses

the optical axis. This qualitative discussion points up the fact that, although

the aberrations of the original system are formally called spherical, they

manifest themselves in a manner much more akin to astigmatism.

The purpose of the cylindrical mirror is now obvious. The intent

is to impart sufficient power to the rays of the sagittal fan to cause them to

converge in the region of focus of the tangential fan. The exact radius of

curvature for the cylindrical mirror can be found only by ray tracing. A

first approximation may be readily obtained analytically from the algebraic

description of the path of the edge rays of the major fan.

A computer ray trace program was written in order to completely

study the design of the corrector system. The program is designed to provide

for the tracing of an arbitrary number of rays from the centers of mass of

equal area portions of an elliptical aperture of arbitrary eccentricity and

size. The rays are traced through reflection from a cylindrical mirror of

any specified radius, and subsequent reflection from the main mirror to any

specifiedfoca_ surfaces concentric with the main mirror. Rays in any specified

direction may be traced.

The program was used to study tile imaging 0£ _he axial p_acil fo_"
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an f/8 elliptical aperture with ratio of major to minor axis of five and a

series of different radii for the cylindrical corrector. For this f/ratio

and eccentricity, best imaging was obtained for a cylindrical mirror radius

of 395 inches. The rms deviation of all rays _¢as equal to 0o 00147 inch,

compared with an rms of 0o 00345 inch for the uncorrected system. The

image for the corrected system, however, was not symmetrical, the rms

deviations in perpendicular directions being in the ratio of about 2:1. For

symmetric imaging an rms of about 0. 002/inch might be expected. A better

performance for this particular value of eccentricity is impossible, since the

rays of the tangential fan never are any closer together than 0. 00136 inch in

the rms sense. However, data for an eccentricity of three on the original

system indicate that a symmetric image patch with an rms radius of 0° 001

inch should be possible. Unfortunately, time and funds prevented the

investigation of this and other possibilities. The study did indicate, however,

that a resolution (1/rms radius ) of 40 lines/mm at f/8 over a 16 by 16

degree field should be possible. With a 5:1 conical condenser, this system

could be made to provide 40 lines/mm at effective f/1.6 in the visible,

infrared or ultraviolet. Though the corrected system was not studied

numerically for off-axis pencils, it is not expected that a cylindrical mirror

of such large radius of curvature will change the off-axis pencils in a manner

significantly different from that of the axial pencil. This conclusion requires

verificatiQn, however.
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as a promising!lens type.

suggested by Dr. James J.

EXPERIMENTAL DATA

Refracting System

For the refracting system:the,concentric system of Sutton _as chosen

The particular design used int_his program was

Baker. The design was selected because of its

curved field, simplicity, vibrational stability and relatively low f/number

(f/3, 5) and it was diffraction-limited over a very wide angle {120 o total field).

The design specifications of the system are given in Figure 15.

The finite conjugate, point spread function 6f the Sutton lens was inspected

and found to be asymmetric; the asymmetry rotated with the lens when it was

turned about its optical axis. Therefore, the point spread function asymmetry

is attributable primarily to a slight misalignment of the two glass hemispheres

when they were cemented together.

Frequency response measurements were made of the Sutton lens and the

Sutton lens-field flattener combination. Special apparatus was needed for these

measurements, particularly because of the very high spatial frequencies involved,

A detailed description of the apparatus has been included in Appendix B. The

measurements are summarized in Figure 16 and further details are given in

Figures 17 and 18.

Figure 16 shows the following frequency responses:

O

(a) Perfect f/3.5 lens system using monochromatic 550 A light.

{b) Sutton lens on, axis using light transmitted tl_rough a green filter

peaked at 550A and whose half-width was 40A.
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Back Focus _---_ J
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Glass Separation Glass Type

R 1 = 1. 073 inches EDF-3 nD = 1.720
0_537

R 2 = 0. 536 inches C-1 1.523
1. 071

R 3 = 0.536 inches C-1 1.523
0. 537

R 4 = 1. 073 inches EDF-3 1. 720

Back Focus = 0.927 inches

The radius of the spherically curved image surface is the same as the EFL,

namely 2 inches.
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0 Sutton Lens at Gaussian Focus - O°

El Suttm] Lens at Gaussian Focus - 5 °

<_ Sutton Lens at Gaussian Focus - 7.5 °
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0 Sutton Lens with fieldflattener - 0 °

Sutton Lens with fieldflattener - 15°

0 Sutton Lens with field flattener - 20 °

Sutton Lens with field flattener - 27 °

Figure !8' - Frequency Response of Sutton Lens -FieldFlattener Combination
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(c) Sutton lens-field flattener combination on axis.

I

I
I

I

I

(d) Sutton lens-field flattener at 27 ° half angle.

(e) Sutton lens at the Gaussian focus, 10 ° half angle.

It should be noted that the frequency response of the Sutton lens is notice-

ably lower than that of a perfect lens. There are several reasons for this. In

general, the measuring apparatus only sets a lower limit on the frequency re-

sponse and any refinements of the measuring technique would tend to raise the

frequency'response curve. In particular, the point spread function has a slight

asymmetry. The aluminized stop caused the introduction of extraneous reflected

and scattered light; there were also a number of pinheles or perforations found

I

I

in the aluminized stop. Also, the deterioration in frequency response at 50 °

half angle is caused, at least in part , by vignetting (the change in effective

f-number as a function of field angle). That is, deterioration is caused by the

transformation of the circular aperture of 0° into an e.lliptical aperture off-axis.

Figure 17 shows the frequency response of the Sutton lens at its Gaussian

focal plane for 0, 5, 7.5 and 10 ° half angles. The deterioration here is due

primarily to the defocused image in the Gaussian plane.

Figure 18 shows the frequency response of the Sutton lens-field flattener

combination at 0, 15, 20 and 27 ° half angles. It will be noted that the frequency

response is a function of angle as well as spatial frequency. The lower response

at large field angles is caused by light leakage out of the fibers into the inter-

stices. As the field angle increases for a given numerical aperture fiber, the

I
I

I

lower rim ray first begins to leak out, then the principal ray, and finally at

very large angles all rays leak out and are scattered. Although the field
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flattener causes a deterioration in the frequency response from that of the Sutton

lens only, it should be pointed out that even for a 10 ° half angle the frequency

response of the Sutton lens at the Gaussian focus is much inferior to that of the

Sutton lens-field flattener combination. Furthermore, it is possible to eliminate

this effect entirely by "Fresnelizing"(13) the entrance end of the field flattener.

Further developments along these lines seem highly justified.

B. Camera

A camera which incorporated the Sutton lens-field flattener combination

was built and tested. An exploded view of this camera is shown in Figure 19,

and Figure 20 shows the camera completely assembled. Photographs of various

targets were taken using this camera and are shown in Figures 21, 22 and 23.

Figure 21 is a photograph of some homes in the hills of San Carlos; Figure 22,

a photograph of a test object in the Optics Technology laboratory; and Figure 23,

a photograph of the same test object with the field flattener removed from the

camera.

C. Reflecting System

The construction of a reflecting system capable of high resolution in the

ultraviolet, visible and infrared regions of the spectrum was also decided upon.

With the assistance of Dr. Baker, a system was selected which consisted of a

large spherical mirror, a decentered elliptical aperture and a fiber optics field

flattener. This particular system was selected since it appeared to offer wide

field angle at a relatively low f-number.
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Figure 24 shows the camera with an aperture-shutter on the front, a

film holder-field flattener assembly and bolts on the side which control the four

degrees of freedom of the mirror mounts.

sembly also had four degrees of freedom.

The film holder-field flattener as-

While a single degree of freedom is

normally used in focusing a camera, with this camera the degrees of freedom

of a given component were not independent, thus focusing by only one degree of

freedom was impossible.

Unfortunately, at the time the decision was made to construct the reflect-

ing system, the computer studies were not complete, therefore allowances were

made for the position adjustments of all components. This made the alignment

of the components difficult since in an experimental design configuration there

are a large number of unnecessary degrees of freedom. Also, the radius of

curvature of the fiber optics field flattener was not necessarily the optimum

since the results of the computer studies were not available at the time of its

fabrication.

The system having the following design data was tested:

where d

RII

f-number f/12

d 1.47 inches

E 5

R m 13.7 inches

IR-f 7.02 inches

= distance from the axis of the system to the edge of the stop

= ratio of major axis to minor axis of the elliptical aperture

= radius of the mirror

= radius of the field flattener
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For preliminary quantitative analysis on the performance of the system

a bar chart was placed 70 ft from the camera and the image which was formed

on the field flattener was inspected visually. The resolution was in excess of

30.1ines/mm; the best resolution which could be photographically recorded was

approximately 20 lines/mm. This is possibly due to the fact that the high

numerical aperture fibers captured scattered light from a large portion of that

mirror which was not used for imaging. Furthermore, it is possible that move-

ment of the camera, which was used outdoors under windy conditions, could

have affected the resolution.

The type of reflecting system used, however, seems to hold considerable

promise. Unfortunately not sufficient effort could be expended on this phase of

the program because of time and fund limitations. Further theoretical and ex-

perimental investigations of different configurations of this type of systems

seem highly justified.
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V. FIBER OPTICS

The work in this area has been directed primarily toward the construction

of three types of fiber optics elements, the fiber optics field flattener, the conical

condenser and the fiber optics distortion corrector.

areas will be discussed separately.

A.

For convenience these three

Fiber Optics Field Flattener

In order to fabricate the fiber optics field flattener it was only necessary

to obtain a suitable size of the material presently being used for fused fiber optics

elements. The first field flattener constructed utilized fiber optics material of

high numerical aperture and small individual fiber diameter. Our standard plates

at that time had the properties of a numerical aperture nominally equal to one

and with an individual fiber diameter of about 8 microns. However, being of

necessity constructed of a glass of high refractive index, a certain amount of

coloration of the fibers was inevitable, which contributed slightly to a fall in in-

tensity at the edge of the field due to the thickness of the field flattener. However,

this first field flattener was incorporated in the camera and provided the initial

data.

As the techniques of fabrication of fused fiber optics employed at Optics

Technology developed, together with improvements in the optical clarity of the

glasses employed, the fused fiber plates became of a correspondingly higher

quality and a second fiber optics field flattener was fabricated. The second field

flattener was used to extend the data obtained from the first. Both the field flat-

teners had similar optical qualities in that they had the high numerical aperture
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and small fiber diameter. The detailed experimental measurements on these

field flatteners are contained elsewhere in this report.

B. Fiber Optics Conical Condenser

On a small scale the fabrication of fused fiber optics conical condensers

is a routine process evolving from the procedures used in the fabrication of

multiple fibers. It was thought that to extend this process to the fabrication of

conical condensers of major diameter two to three inches would involve a con-

siderable outlay both in new equipment and in basic raw material in that a large

fiber boule would need to be suspended in a vertical cylindrical furnace in such

a fashion as to allow one end to become sufficiently molten to allow it to form a

cone while the other end remains sufficiently rigid to support the complete weight

of the boule. In the drawing of multiple fibers this is simply accomplished by

having a boule whose length is Sen to twelve times as great as its diameter, the

low heat conduction of glass being sufficient to maintain the required conditions.

The first experiment performed in the production of larger cones was

tried using a one-inch diameter fused fiber boule of about five inches in length.

This was held by metal wires which allowed it to hang through the center of a

small, short cylindrical furnace. This whole assembly was constructed within

a large annealing oven, through the baseplate of which a wire joined to the lower

end of the boule could pass. In performing the experiment the annealing oven

was heated to a temperature somewhat above the annealing temperature of the

glass. Fairly intense local heating was then applied to the center of the boule

through the action of the small furnace surrounding it. As the boule softened, it

was possible to draw it apart into two cones by lightly pulling the wire attached
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to its lower end. On completion of the process the small furnace was switched

off and the whole assembly allowed to cool within the annealing oven under

strictly controlled thermal conditions.

The cone produced by this technique was somewhat unsymmetrical

caused by the boule not being located precisely in the center of the small heating

furnace, one side thus becoming more fluid than the other. However, it ap-

peared from the preliminary results, which were quite encouraging, that the

technique was sound in principle and could be applied to larger assemblies.

Consequently the experiment was redesigned in order to accept boules of two

inches in diameter.

The first experiment using the revised apparatus and a two inch boule

pointed out several important limitations in the apparatus and the process. The

first of these was the fact that the two-fold increase in diameter demanded a

disproportionately large increase in the power dissipation of the small heating

furnace. As a result the furnace being used was run at the utmost limit of its

capability and several hot spots could be seen upon its surface. This resulted

in a non-uniform heating of the boule causing an unsymmetrical cone to be pro-

duced. Nevertheless, it was felt that with an improved boule and minor furnace

modifications it would still be possible to produce a good quality cone.

The second boule, somewhat larger than the previous one, was also some-

what shorter, being a little under five inches in length. In forming a cone from

this boule, the same limitations observed in the first experiment existed although

to a lesser degree but, more important, it was found that the decreased length

was insufficient to keep the two ends of the boule cool enough during the process
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and a tendency was noticed for the boule to pull apart at the points of its support.

To overcome this, it was necessary to apply what was later found to be excessive

heat at the center of the boule resulting in an extremely steep thermal gradient

between the center and the surface of the boule. Thus, while a mechanically

sound cone was formed, on examination it was found that the central portion of

the fibers was comparatively undeformed while the outer layers had fused suf-

ficiently to merge together and lose their optical identity.

In the experiments on the next boule it soon became apparent that even

though further precautions had been taken to prevent the softening of the ends,

sufficient rigidity was not being maintained to allow a satisfactory cone to be

drawn. The experiment was therefore stopped and the boule allowed to pass

through its annealing cycle. In order to prevent the softening of the bottle at the

point of support a massive steel cylinder was attached to the metal clamp and al-

lowed to extend several inches above the top of the furnace. The furnace was

preheated gradually and the boule slowly inserted into the hot central zone. The

tip of the boule softened and was withdrawn through the bottom of the furnace.

Several feet of the tip of the cone were drawn off to insure that stable conditions

had been reached within it. The furnace was then closed off and the boule allowed

to anneal. At the conclusion of this experiment it was found that a perfectly

shaped cone had resulted and this was removed from the clamp and cut to size.

The final dimensions of the cone were: major diameter, 2.25 in. ; smaller

diameter, 0.5 in. ; overall length, approximately 3 in. ; fiber size at large end,

25 microns. The alignment exhibited within this cone appeared to be excellent,

a straight edge being reproduced with little or no distortion. However, being of
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high numerical aperture, the cone exhibited a certain amount of coloration and it

was decided to reduce its overall length. This could be achieved with only minor

losses in the overall diameters and at a possible reduction of about 0.75 in. in

length. During the subsequent cutting, several cracks developed in this cone, un-

doubtedly due to the cumulative stresses induced into the boule by the many thermal

cycles it had endured during the fabrication of the cone. At the present time this

cone is at the grinding and polishing stage.

C: Distortion Corrector

In order to assess the relative contribution of fiber diameter variation and

actual displacement of fibers at the two ends of a distortion corrector, a detailed

examination of available distortion correctors was undertaken. A rectangular

grid was photographed through the distortion corrector in such detail as to show

the ends of the individual fibers. To establish a reference the procedure was

reversed and, without moving either the grid or the distortion corrector, the fi-

bers were photographed through the grid structure. Thus by direct observation

it was possible to compare the relative positions of the input and output ends of

many of the individual fibers. It was also feasible to observe any change in diam-

eters that existed within the fibers. It was possible to show that two effects were

apparent in providing the distortion corrector characteristics of the fiber optics

plate. Toward the center of the plate the individual fibers were well fused and had

apparently been under considerable pressure during their processing. This had

resulted in a change of diameter along the length of the fiber. Conversely, at the

edges of the plate where the fibers had been loose packed and not subjected to such

high pressure, a tendency to change the relative positions of the fiber ends rather

than their diameters was noted.
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Neither of these two effects could be conclusively shown to predominate

and in the absence of further samples it was assumed that a combination of both

these effects may in fact be necessary at all times to produce distortion in a

fiber bundle.

During these initial measurements several experiments were in progress

to produce further distortion correcting devices. Two approaches were tried,

each of which met with partial success in that a distortion device was obtained

although no definitive technique was established. In the first of these methods

of fabrication the boule of fibers was fused to form a rod with a re-entrant cavity

in its lower end. This rod was held vertically in a furnace and allowed to form

a cone. As the edges of the re-entrant cavity drew together, an entrapment oc-

curred and a gradient thereby produced. By further pulling the boule into a cone,

a gradient was established across the rod and, as was apparent upon subsequent

examination, considerable differential movements occurred within the main body

of the fibers. The distortion produced by this method was severe and non-linear

across the boule. However, it did appear that the method showed some promise

and could possibly have been developed had conditions permitted.

The second approach also produced results which could probably have been

extended with further effort. In this method, distortion was introduced into a

boule during its formation by the application of considerable pressure at different

points on its circumference. The first experiments on this method were, for the

sake of convenience, designed to produce distortion which was non-radial in

character. Loose fibers were formed into rectangular boules by being placed

into a U-shaped jig which was then heated up to the softening point of the glasses
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used. Pressure was applied to the fibers by the action of a plunger inserted into

the open end of the U. By suitably shaping both the face of the plunger and the op7 _,

posing face of the U a deformation in the cross section of the fiber boule could be

induced. Similar experiments using carbon moulds instead of metal moulds were

performed. The fragility of the carbon did not allow sufficiently high pressures

to be used to provide a significant amount of distortion.

At the conclusion of these experiments on the examination and fabrication

of distortion correctors further work on this aspect of the program was held in

abeyance in order to concentrate our efforts toward the construction of a fiber

optics conical condenser. It is clear that further developments of distortion cot-

rectors are imperative before the use of fiber optics image correctors in new and

unique optical systems can be optimized.
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APPENDIX A

IMAGE SYNTHESIS STUDIES

I. INTRODUCTION:

The technique for providing real images from the design data of

hypothetical optical systems is called image synthesis(. 1 ) (2) To synthesize aa

image from the lens design data the characteristic point spread function of

the optical system must first be determined and represented by a "spot diagram".

This representation, or spot diagram, is used with a highly convoluting optical

system to produce real images of typical geometrical and pictorial test targets

(transparancies). The images thus formed are almost indistinguishable from

those formed by the optical system when it is constructed.

ObviousLy, such a technique is valuable to a Lens designer, both

as a means of determining the relative importance of various kinds of aberrations

on image degradation and evaluating the design of an optical system before it

is constructed.

In the studies under this program the accuracy of point spread

function representation was 1) bxtended beyond the previous state-of-the-art;

2)new point spread functions were generated and represented; 3) a new technic:ue

for making small spot diagrams was developed; 4) a small versatile image

synthesizer was constructed; 5) images of space targets were synthesized;

6) valuable insight into the image degrading effects of several aberrations was

gained; and 71 an image formed by a real optical system was compared to the

appropriate synthesized image.
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II. TEC HNICAL DISCUSSION

The following technical discussion deals with theoretical and experimental

aspects of the image synthesis technique. Discussed are method_,:problems,

solutions_ possibilities and limitations of the general technique. The actual

experimental work which was accomplished on this program will be reported

in a later section.

A. Theory

Equation (1) is the well known expression (3' 4}or the intensity

distribution in the image i(x, y) of an extended, incoherently illuminated

object O(Xo, YO)"

i(x,y)=ff 0(Xo, yo) I (XoYoO Xo) yo) dXo dy o (1)

The optical system, including aberrations, is charactei-ized at each image point

(x,y) by the point spread function I(x_y; Xo_ YO )" I f the aberrations vary

slowly over a tsoplanic patch, the "shape" of I(x_y; x 0 , YO) does not change

rapidly and equation (1) may be rewritten as a convolution integral.

f;i (x,y) = 0 (Xo_Yo) I (x o- Xo_ y -yo) dxodY o

Simple arguments from first principles show that this expression also

describes the intensity in the shadow east by source S through target T onto th(;

plane of detector D of Figure A_I.

In this case S is an incoherent diffuse light sDurce whoseiintendity vmlias

as I(x-x0, Y-Y0 ) and T is a transparency whose transmission v'_ries as:

O(xo' Y0 )" An important experimental assumption which is implicit in the

A-2 9_
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Figure A-1 - Image Synthesizer
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foregoing is that if the target T were a pinhole, that is if O(_ , Y0) were a

2 ]imensidnal Dirac delta function, the point spread function would be

reproduced exactly in the plane of the detector. This assumption can indeed l_

realized approximately, but a light source of special physical properties is

required. This particular point will be discussed later.

It would seem appropriate to discuss the calculation of point spread

functions. There are, however, excellent sources (3, 5) on the subject of both

geometric and diffraction aberrations. The Zernike-Nijb_r theQry of diffraction

aberrations is discussed by Born and Wolf and details of the calculations are

(4)
given in a paper by Kapany and Burke . Furthermore, Born and Wolf

devote all of Chapter 5 of their book to the discussion of geometric aberrations.

There is a real possibility of extending the image synthesis technique

to image degrading effects other than aberrations. For example, in a real

optical system vibrations degrade the image in much the same way as aberrations.

Consider the image of a point source formed by a vibrating lens which suffers

from aberrations. If the aberrations can be described mathematically, a

probability P( _ , _ ) can be calculated such that P(_, _) dq d/_ ) describe

the probability that the Gaussian point in the image plane will be at ( )l, _ )"

The image TVA (x i , Yi ) formed by the lens is given by
t" 1"

TVA (xi) Yi) = j J T(xi )_, Yi-_a )P(_,fl )d'l d_

where T(x i , Yi) in the point spread function for aberrations Since TVA (xi, Yi )

is the response of the system to a point source it is by definition the point

spread function of the vibrating lens. Moreoever, since it is expressible as a

• , • Jl ,1 •co.volution m_vg_aL L[m ima_ _/LLLLI_SLZ_i UaLi bt_ u_t_(] _u _UIIt_J._LLt_ _hi_ ''i _tlLL_LLI_

(3)
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point spread function. That is, either TVA (x i , Yi ) can be computed before-

hand and represented by a single spot diagram or spot digrams representing

T( xi , Yi ) and P(_. ,_ ) can be cascaded so that TVA(X i , Yi ) can be generated

in the image synthesizer.

The possibility of simulating other image degrading effects such as

atmospheric turbulence, film graininess and granularity, electronic noise, etc.

would seem to be feasible.

B. Experimental Considerations

It is a simple rn_tter to construct the image synthesizer of Figure At1.

However, Wttie4fitegration expressed by Equation (2) is to be accurate, careft_l

attention must be given to experimental technique. In particular, the physical

representations of mathematic point spread funct_ns must be carefully

determined and constructed and the synthesizer must be designed in such a way

that accuracy is not destroyed by experimental limitations. Some experimental

techniques have been discussed in the literature (1' 2) These will be reviewe6

and new techniques will be introduced.

1. Representation of Point Spread Functions

The ideal representation is a transparency whose transmission varies

continuously according to the intensity in the point spread function. Unfortunately,

it is an extremely difficult task to construct transparencies of anything but very

simple functions (one dimension variations in transmission as the sine of the

angle, for example). However, a good approximation to a transparency can

be made by placing a large number of transparent holes on a opaque backgrourLd

in such a manner that the transmission averaged over a small area containing
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several holes is proportional to the intensity in the point spread function.

If the holes in such a "spot diagram" do not overlap, this approximation

approaches the ideal representation as a number of holes becomes arbitrariily

large.

There are a number of obvious ways of constructing spot diagrams.

The drilling of tiny holes in a thin metal sheet is straightforward, but the

method can only be used for slowly varying functions because the maximum

number of holes per unit area which can be drilled is quite small.

On the other hand, one can use photographic techniques to accurately

represent more rapidly varying functions by preparing first a large scale

drawing of a spot diagram and then recording it to the desired scale on high

contrast film in the form of transparent spots on an optically dense background.

Unfortunately, even when film is developed for maximum density the trans.-

mission of the background is finite. Thus, in cases where the ratio of the are_

of the holes to the area of the background is small, the amount of light trans-

mitted by the background may be comparable to the light transmitted by the

holes. This background "noise" is not characteristic of the point spread

function and thus constitutes an appreciable error.

To avoid the problem of background noise, a background of infinite

optical density maybe selected at the outset. For example, a thin, vapor-

deposited film of copper on a glass substrate constitutes such a background. A

standard photoresist technique can be used to place an image of a spot diagram on

the copper and the holes can be etched through after the image is developed.
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Cathode ray tube display of spot diagrams appears to offer some

advantages over the photographic techniques cited above. In this method, the

co-ordinates of the spots are calculated by a high speed digital computer and

are stored on magnetic tape or cards at the time of computation. The pattern

is then generated automatically by passing the tape or cards through a digital-

to-voltage converter whose output voltages deflect the electron beam of the

cathode ray tube to the positions specified by the co-ordinates. If the cathode

ray tube itself were used in an image synthesizer, application to semi-auto-

matic lens design becomes apparent. The input to such a system would be

optical system design data and the output would be a visual or photographic

record of the image which would be generated by the hypothetical optical system.

Obvious disadvantages of this technique of display ave low light intensity and

low resolution from the cathode ray tube as well as the possibility of overlapping

of spots generated on the tube.

2. Image Synthesizer

Strictly speaking, in order for the spot diagram of Figure A_t to be

exactly reproduced in the plane of the detector for a pinhole target, it is

necessary for the radiation pattern from an individual spot to be isotropic.

Although no radiating surface has this property, opal glass or a ground glass

screen approach it over very small angles. It should be pointed out in this

regard that the radiation pattern from a patch of area on a diffuse surface ce,_ses

to be a characteristic of the entire surface and becomes a characteristic of a

particular location on the surface when the size of the patch sampled approaches
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i the size of the diffusing elements on the surface. It is therefore necessary

that the diffusing elements be made small enough so that_ for areas smaLL

i compared to the size of the spot diagram, the radiation pattern remains

i approximately isotropic over small angles.

For practical reasons then it is necessary that the synthesizer be

i designed in such a way that the solid angle subtended by thetarget at any spot

i in the spot diagram be small. This is equivalent to requiring that the

i dimensions of the spot diagram and target both be small compared to their

separation d 1'

I From the geometry of the device it is easily seen that the magnifications

i of the spot diagram and the target in the plane of the detector are d 2/d land /

(d 1+ d 2 )/d 1 respectively. |
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III. EXPERIMENTAL WORK

A. Apparatus

A photograph of the particular instrument used in the study is shown

in Fig::A-2 and its essential features are depicted graphically in Fig.A-3.

Condensing lens L lC°llimates light from source S so that the ground glass

diffusion screen D 1 is uniformly illuminated. The position of lens L 2is

adjustable so that, if desired, a slightly defocused image of the spot diagram SD

can be formed on the thin (0.020 in.) ground glass diffusion screen D 2. The

defocusing produces a closer approximation to the point spread function. The

target wheel contains several targets and can be transported along its axis or

rotated about its axis. A ground glass screen is normally located in the film

plane FP and the image on it can be viewed through eyepiece E with the aid of

mirror M. For photographic work a film holder is inserted in the film plane

and the ground glass screen is pushed aside. S, L 1 ' D 1 ' SD, and E are

external to the light tight enclosure which surrounds the other components.

Lens L 2 is provided with a shutter.

In particular, source S is a 100 watt projection lamp enclosed in a Cenco

incadescent lamp illuminator (PG 2015). Diffusion screen D, is a 2" x 2' micro-

scope slide which has been ground with 600 grit grinding compound. Lens L 2

is a 44 mmo Bolsey lens and shutter, with a shutter release provided outside

the light tight enclosure. This lens can be translated along its axis by means

of a lever located outside the enclosure, but for accurate integration the best

position for the lens is such that the image on D 2 is demagnified and slightly

defocused. Screen D 2 is about 0.020 in. thick and was ground with 600 grit

A-9 ?/
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grinding compound. The target wheels accepts 12 x 12 mm transparencies

and can be translated along its axis by means of calibrated 1 - turn helipot.

Eight different targets can be rotated into position by turning a knob at the

end of the enclosure. The magnifications of spot diagram M and the magnification
S

of the target M t are related to the arbitrary units on the helipot in Figures A-4

and 5, respectively.

The film holder accepts 2-1/2 in. x 3-1/2". cut film. Baffles were

placed appropriately such that only light which passes through the lens reaches

screen D 2.

For some spot diagrams which were used, the diameter of an

individual spot on D 2 was approximately 150 microns. Because of the particular

geometric configuration some of these spots were required to radiate at angles

up to 8_a single spot of diameter 150 microns was investigated and is shown in

Fig .A_6. The relative transmitted intensity is plotted as a function of angle

measured from the normal to the screen D 2. The curve has an half width of

over 20 degrees, although the pattern in anything but isotropic the variation

over 8 or 9 degrees is not too large. The pattern was not changed grossly for

different locations of the spot on the screen.

B. Procedure

The information on the point spread functions was generated by a

computer, which specified the intensity in the image at a large number of points

given by their polar coordinates. For the purpose of representing this intensity

distribution, a 40 x 60 in. white display board was divided into small areas

by first drawing concentric circles and then drawing radial lines at equal
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angle intervals. The radii of adjacent circles differed by a constant amount.

The intensity data was then transposed graphically to specify the flux associate=l

with a particular element of area on the display board. Adhesive-backed, black

terminal circles 0. 093" in diameter were placed on the display board to

represent the flux. A scale was selected such that the highest total number of

terminal circles was used without overlapping in the high intensity regions.

The representation was photographed with Kodalith Ortho Film and

reduced in size to fit into an area approximately 2 x 2 in. The final form of

the spot diagrams consisted of transparent holes etched through a vapor deposited

copper film on a glass substrate. In order to eliminate pinholes, it was neces.mry

-5
to deposit three thin ( ___ 10 in.) layers of copper on the glass and to do the

photochemical processing in a cleaa room.

The relative transmissions of the spot diagrams were determined by

focusing the light transmitted through each and in turn onto a phototube. These

measurements were used to establish an exposure time such that the time-

integrated exposures through the various spot diagrams could be made id_ntmal:.

An experimental H and D curve was obtained for the film which was

used, and an exposure value was selected for the synthesis such that the linear

portion of this curve was used. In principle, this was not necessary for a meaningful

comparison of the synthesized photographs to be made. It was desirable for

practical reasons, however, that the photographs be developed under controlled

conditions of time and temperature_ Care was exercised to insure that all

photographs were treated in exactly the same manner.
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C. Result_
t

Table I show, the aberrations associated with the nine spot diagrams

which were constructed and Fig, ,_-7 shows the spot diagrams along with several

images which were synthesized from them. Some images are obviously

better than others. However, close inspect ion reveals that the"quality" of an

image associated with a given aberration depends upon the type of object.

Moreover, in comparing the images associated with two different aberrations,

one may find that depending on the shape of the test object different magnitudes

of various aberrations are tolerable. Obviously, no general conclusions can

yet be drawn from these images. Nevertheless, they do point out the potential

of the image synthesis technique for a study of this type and further work is

indicated.

There is one conclusion that can be drawn from the results so far.

When the aberrations under cumsideration are small, there is a gross difference

between the geometric point spread functions and the diffraction point spread

functions. Therefore, for accuracy, diffraction effects must be taken

account of in calculating the point spread functions. It should also be noted

in this respect that the images synthesized using diffraction theory were, in

general, better than those found using geometric theory, which agrees with th_

general observations of other workers in the field.

For comparison Fig. A-8 shows a synthesized image which was made

using the airy disc representation, and Fig'. :A-9 shows a photogra_,h of the

same target made through the Sutton Lens whose point spread function is nearly

an airy disc.
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No.

1

2

3

4

5

8

9

TABLE A - 1

TYPES OF SPOT DIAGRAMS CONSTRUCTED

A be rration

Airy Disc (Diffraction)

Pinhole (Geometric)

Coma(Diffraction)

Coma (Geometric)

Gaussian Plane

Spherical (Diffraction)

Circle of Least Confusion

Seherical (Geometric)

Gaussian Plane

Astigmatism (Diffraction)
Central Plane

Astigmatism (Geometric)
Central Plane

Coma and Astigmatism (Diffraction)
Central Plane

Amount

1.11 wavelengths

1.11 wavelengths

0.50 wavelengths

0.50 wavelengths

0.96 wavelengths

0.96 wavelengths

0.96 wavelengths

each aberration
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APPENDIX B

APPARATUS FOR MEASURING VERY HIGH

SPATIAL FREQUENCY RESPONSE

Figure 1 is a photograph of the special apparatus which was used for

measuring the very high spatial frequency response of the Sutton lens. It is

similar to the apparatus which was described by Kapany. (1) The essential

features of the apparatus are illustrated in Figure 2.

Light from the slit is rendered parallel by the collimator and the test

lens forms a real image corresponding to line spread function, A(x), of the slit

at its focal point. The optical design is such that the corresponding Gaussian

image of the slit is smaller than the line spread function of the test lens, and

diffraction effects due to the presence of the collimator are not appreciable.

The microscope objective magnifies this image onto a sine wave mask which is

located on the inside of a rotating glass drum. The time modulated intensity is

detected by a photomultiplier tube and the signal is displayed on the oscilloscope.

Several sets of masks, each having 25 cycles of a given frequency, are posi-

tioned along the circumference of the drum. The signal on the oscilloscope is

photographed and the frequency response is calculated from the measurements

taken directly from the photographs.

(1) N. S. Kapany, "Optical Image Assessment',, Nature, 188, pp. 1083-1086

(December 24, 1960).
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